An orthogonal representation of a graph $G$ over a field $\mathbb{F}$ is an assignment of a vector $u_v \in \mathbb{F}^t$ to every vertex $v$ of $G$, such that $\langle u_v,u_v \rangle \neq 0$ for every vertex $v$ and $\langle u_v,u_{v'} \rangle = 0$ whenever $v$ and $v'$ are adjacent in $G$. The locality of the orthogonal representation is the largest dimension of a subspace spanned by the vectors associated with a closed neighborhood in the graph. We introduce a novel graph parameter, called the local orthogonality dimension, defined for a given graph $G$ and a given field $\mathbb{F}$, as the smallest possible locality of an orthogonal representation of $G$ over $\mathbb{F}$. We investigate the usefulness of topological methods for proving lower bounds on the local orthogonality dimension. We prove that graphs for which topological methods imply a lower bound of $t$ on their chromatic number have local orthogonality dimension at least $\lceil t/2 \rceil +1$ over every field, strengthening a result of Simonyi and Tardos on the local chromatic number. We show that for certain graphs this lower bound is tight, whereas for others, the local orthogonality dimension over the reals is equal to the chromatic number. More generally, we prove that for every complement of a line graph, the local orthogonality dimension over $\mathbb{R}$ coincides with the chromatic number. This strengthens a recent result by Daneshpajouh, Meunier, and Mizrahi, who proved that the local and standard chromatic numbers of these graphs are equal. As another extension of their result, we prove that the local and standard chromatic numbers are equal for some additional graphs, from the family of Kneser graphs. We also show an $\mathsf{NP}$-hardness result for the local orthogonality dimension and present an application of this graph parameter to the index coding problem from information theory.
翻译:摘要:在域$\mathbb{F}$上,图$G$的正交表示是将向量$u_{v}\in\mathbb{F}^{t}$分配给$G$的每个顶点$v$的一种方式,使得每个顶点$v$的$\langle u_{v},u_{v}\rangle\neq0$,且当$v$和$v'$在$G$中相邻时,$\langle u_{v},u_{v'}\rangle=0$。 此正交表示的局部性是由图中的封闭领域关联的向量所张成的最大子空间的维数。 本文提出了一种新的图形参数,称为本地正交维度,对于指定的图$G$和域$\mathbb{F}$,定义为$G$的正交表示的最小可能局部性。本文研究了利用拓扑方法证明本地正交维数下限的实用性。 我们证明了对于拓扑方法暗示色数下限为$t$的图来说,在每个域上,其本地正交维度至少为$\lceil t/2 \rceil +1$,加强了Simonyi和Tardos关于本地色数的结果。 我们展示了对于某些图来说,该下限是紧致的,而对于其他图来说,实数上的本地正交维度等于色数。 更一般地,在每个线图的补图中,本地正交维度在$\mathbb{R}$上与色数相同。 这加强了Daneshpajouh、Meunier和Mizrahi最近的结果,他们证明这些图的本地和标准色数是相等的。 作为其结果的另一个扩展,我们证明了一些其他Kneser图的本地和标准色数是相等的。 我们还展示了本地正交维度的NP难度结果,并介绍了该图形参数在信息论的索引编码问题中的应用。