We study property testing of properties that are definable in first-order logic (FO) in the bounded-degree graph and relational structure models. We show that any FO property that is defined by a formula with quantifier prefix $\exists^*\forall^*$ is testable (i.e., testable with constant query complexity), while there exists an FO property that is expressible by a formula with quantifier prefix $\forall^*\exists^*$ that is not testable. In the dense graph model, a similar picture is long known (Alon, Fischer, Krivelevich, Szegedy, Combinatorica 2000), despite the very different nature of the two models. In particular, we obtain our lower bound by an FO formula that defines a class of bounded-degree expanders, based on zig-zag products of graphs. We expect this to be of independent interest. We then use our class of FO definable bounded-degree expanders to answer a long-standing open problem for proximity-oblivious testers (POTs). POTs are a class of particularly simple testing algorithms, where a basic test is performed a number of times that may depend on the proximity parameter, but the basic test itself is independent of the proximity parameter. In their seminal work, Goldreich and Ron [STOC 2009; SICOMP 2011] show that the graph properties that are constant-query proximity-oblivious testable in the bounded-degree model are precisely the properties that can be expressed as a generalised subgraph freeness (GSF) property that satisfies the non-propagation condition. It is left open whether the non-propagation condition is necessary. We give a negative answer by showing that our property is a GSF property which is propagating. Hence in particular, our property does not admit a POT. For this result we establish a new connection between FO properties and GSF-local properties via neighbourhood profiles.
翻译:关于有界度图中一阶性质可测试性及与无邻域限制测试的关系
翻译后的摘要
我们研究了限制于有界度图和关系结构模型中,可用一阶逻辑表达的性质的测试问题。我们证明了,任何由一个具有$\exists^*\forall^*$量词前缀的公式定义的一阶性质都是可测试的(即可以使用恒定的查询复杂度进行测试)。然而,我们对存在这样一个由一个$\forall^*\exists^*$量词前缀的公式定义的一阶性质而不能进行测试的情况进行了探究。尽管这两种模型性质截然不同,但在稠密图模型中,早已知道了类似的情况(来自Alon、Fischer、Krivelevich、Szegedy,Combinatorica 2000的工作)。特别地,我们通过使用图的锯齿积构造的有界度扩张器定义了一个FO公式,从而获得了下界。我们预计这将是独立的研究意义。然后,我们利用我们定义的一类FO可定义的有界度扩张器回答了一个长期存在的无邻域限制测试器(POTs)的开放问题。POTs是一类特别简单的测试算法,其中基本测试会多次执行,其次数可能取决于邻域参数。与此同时,基本测试本身与邻域参数无关。在他们开创性的工作中,Goldreich和Ron [STOC 2009; SICOMP 2011]表明,在有界度模型中,恒定查询的无邻域限制可测试的图性质正好是可以表达为满足非传播条件的广义子图无环性质(GSF)的性质。但是,非传播条件是否必要则留给讨论。我们证明了,我们的性质是一个可以传播的GSF性质,并且不支持POT。因此特别地,我们的性质不符合POT的条件。对于这个结果,我们通过邻域简介建立了一种新的FO性质和GSF-局部特征之间的联系。