Emails and SMSs are the most popular tools in today communications, and as the increase of emails and SMSs users are increase, the number of spams is also increases. Spam is any kind of unwanted, unsolicited digital communication that gets sent out in bulk, spam emails and SMSs are causing major resource wastage by unnecessarily flooding the network links. Although most spam mail originate with advertisers looking to push their products, some are much more malicious in their intent like phishing emails that aims to trick victims into giving up sensitive information like website logins or credit card information this type of cybercrime is known as phishing. To countermeasure spams, many researches and efforts are done to build spam detectors that are able to filter out messages and emails as spam or ham. In this research we build a spam detector using BERT pre-trained model that classifies emails and messages by understanding to their context, and we trained our spam detector model using multiple corpuses like SMS collection corpus, Enron corpus, SpamAssassin corpus, Ling-Spam corpus and SMS spam collection corpus, our spam detector performance was 98.62%, 97.83%, 99.13% and 99.28% respectively. Keywords: Spam Detector, BERT, Machine learning, NLP, Transformer, Enron Corpus, SpamAssassin Corpus, SMS Spam Detection Corpus, Ling-Spam Corpus.


翻译:电子邮件和短信是当今通信中最受欢迎的工具,随着电子邮件和短信用户的增加,垃圾邮件的数量也在增加。垃圾邮件是一种不需要的、未经请求的、大量发送的数码通信,垃圾邮件和短信正在通过不必要地淹没网络链接造成大量资源浪费。虽然大多数垃圾邮件来自广告商,他们希望推出其产品,但有些垃圾邮件的意图更恶意得多,如窃听电子邮件,目的是欺骗受害者放弃敏感信息,如网站登录或信用卡信息,这类网络犯罪被称为98个phishing。对于反措施垃圾邮件、许多研究和努力,以垃圾邮件或垃圾邮件的形式过滤信息和电子邮件。在这项研究中,我们用BERT预先培训的模型来将电子邮件和信息按其上下文进行分类,我们用SMS收藏、Enronampal、Spasimampial、Smbal-Slipassim、S-SMAMS Cristal% Crial 和SMAMS Kyampal收集的多种软件,我们用SMS收集系统、Embriam、SMAM、Slim、Cribem、Slicom、Sliam、Clim、Sem、Salima、Cryampal 分别、S

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月22日
Arxiv
0+阅读 · 2022年7月21日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员