The perceptive models of autonomous driving require fast inference within a low latency for safety. While existing works ignore the inevitable environmental changes after processing, streaming perception jointly evaluates the latency and accuracy into a single metric for video online perception, guiding the previous works to search trade-offs between accuracy and speed. In this paper, we explore the performance of real time models on this metric and endow the models with the capacity of predicting the future, significantly improving the results for streaming perception. Specifically, we build a simple framework with two effective modules. One is a Dual Flow Perception module (DFP). It consists of dynamic flow and static flow in parallel to capture moving tendency and basic detection feature, respectively. Trend Aware Loss (TAL) is the other module which adaptively generates loss weight for each object with its moving speed. Realistically, we consider multiple velocities driving scene and further propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy. In this realistic setting, we design a efficient mix-velocity training strategy to guide detector perceive any velocities. Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively compared to the strong baseline, validating its effectiveness.
翻译:自主驾驶的感知模型要求在低安全潜值范围内快速推导。 虽然现有的工程忽视了处理后不可避免的环境变化, 流动的感知会共同评估延缓度和准确度, 以视频在线感知为单一指标, 指导先前的工作, 以寻找精确度和速度之间的权衡取舍。 在本文中, 我们探索关于这一指标的实时模型的性能, 并赋予模型以预测未来的能力, 大大改进流动感知的结果。 具体地说, 我们用两个有效的模块建立一个简单的框架。 一个是双流感知模块( DFP ) 。 它由动态流和静态流组成, 并同时捕捉移动趋势和基本检测功能。 趋势感知损失( TAL) 是另一个模块, 以移动速度对每个对象进行适应性地生成损失权重。 现实地说, 我们考虑多个速度驱动场景, 并进一步提议快速感知流动的AP AP (VsAP) 联合评估准确性。 在这个现实的环境下, 我们设计一个高效的混合速度训练策略, 以引导探测器感知到任何强的天速度。 我们简单的方法分别通过4.- AL- AL- AS- AS- AS- dal- pas- pas- pasional- pas- procal- pal- passional- pal- pass- prog- progalmentalmentalmentalmentalmentalmental- palmental- sal- pal- sal- pal- pal- palityalityalmentalmentalmentalmentalmentalmental