项目名称: 整群环的K2群
项目编号: No.11301315
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 高玉彬
作者单位: 陕西师范大学
项目金额: 22万元
中文摘要: 确定整群环ZG的各阶K-群的具体结构是代数K-理论中的重要问题,在代数拓扑和代数数论中也有重要的意义。本项目拟研究G是有限群时K2(ZG)的具体结构。对于任意有限群G,拟先将ZG表示为两个扭群环的拉回,再分别将这两个扭群环表示为其它扭群环的拉回,这样依次构造出有限个环范畴上的Cartesian块。从这些块可以得到一个推广的Mayer-Vietoris序列以及K2(ZG)的一个滤链,利用M-V序列计算滤链中相邻两项的商群,最终将K2(ZG)表示为有限多个K2(ZH)的直和,H是阶数较小的群;当G的阶数较小时,通过具体计算得到K2(n,ZG)中元的表示形式,证明K2(ZG)可否由Steinberg符号生成,然后确定这些符号的阶数。
中文关键词: K2 群;群环;Dennis-Stein 符号;局部上同调;相伴素理想
英文摘要: To determine the explicit structure of the K-groups of integral group ring is one of the most important problems in algebraic K-theory. These K-groups also play an important role in algebraic topology and number theory. In this project, we intend to determine the explicit structure of K2(ZG) for a finite group G. For an arbitrary finite group G, starting form a Cartesian square of ZG, we will construct a series of Cartesian squares of rings one after the other. From these squares, we can get a composition series of K2(ZG) and a generalized Mayer-Vietoris sequence. After calculating the quotient of every two consective terms in the composition series by using generalized M-V sequence, K2(ZG) can be decomposed into a direct sum of K2(ZH) with H a group of relatively small order; when the order of G is relatively small, we can get the explicit representation of the elements of K2(n,ZG) through direct calculation, then prove whether K2(ZG) can be generated by Steinberg symbols, and at last determine the order of these symbols.
英文关键词: K2 group;group ring;Dennis-Stein symbol;local cohomology;associated prime