The multiple-target self-organizing pursuit (SOP) problem has wide applications and has been considered a challenging self-organization game for distributed systems, in which intelligent agents cooperatively pursue multiple dynamic targets with partial observations. This work proposes a framework for decentralized multi-agent systems to improve intelligent agents' search and pursuit capabilities. We model a self-organizing system as a partially observable Markov game (POMG) with the features of decentralization, partial observation, and noncommunication. The proposed distributed algorithm: fuzzy self-organizing cooperative coevolution (FSC2) is then leveraged to resolve the three challenges in multi-target SOP: distributed self-organizing search (SOS), distributed task allocation, and distributed single-target pursuit. FSC2 includes a coordinated multi-agent deep reinforcement learning method that enables homogeneous agents to learn natural SOS patterns. Additionally, we propose a fuzzy-based distributed task allocation method, which locally decomposes multi-target SOP into several single-target pursuit problems. The cooperative coevolution principle is employed to coordinate distributed pursuers for each single-target pursuit problem. Therefore, the uncertainties of inherent partial observation and distributed decision-making in the POMG can be alleviated. The experimental results demonstrate that distributed noncommunicating multi-agent coordination with partial observations in all three subtasks are effective, and 2048 FSC2 agents can perform efficient multi-target SOP with an almost 100% capture rate.
翻译:多目标自我组织追踪(SOP)问题具有广泛的应用性,并被认为是分布式系统的一个具有挑战性的自我组织游戏,智能剂在其中合作追求多种动态目标,并进行部分观察。这项工作提出了一个分散式多试剂系统框架,以提高智能剂的搜索和追寻能力。我们将自我组织系统作为部分可见的Markov游戏(POMG)模型,具有权力下放、部分观察和非通信的特点。拟议的分布式算法:模糊的自我组织合作共进(FSC2),然后被用来解决多目标SOP的三个挑战:分布式自我组织搜索(SOS)、分配任务分配和分布式单一目标追踪。FSC2包含一个协调式多试剂深度强化学习方法,使同质剂能够学习自然SOS模式。此外,我们提出了一种基于模糊的分布式分配式任务分配方法,将多目标SOP引入几个单一目标追寻问题。合作性共进原则被用来协调每个单一目标追寻问问题的分流跟踪者:分布式自我组织搜索(SOS)、分配式任务分配分配式任务分配和分布式单一目标的单一目标搜索(SOS)、分配式任务分配式任务分配(SSC2),因此,内在部分观测的不确定性和分布式多级评分解(PMG)所有部分测量和分布式决定结果与SBMG)中,可以与SBSBSBSBSBSBSBSM 20BSBSBSMSMA的分散式所有部分结果。