We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hidden dynamic geostatistical models (f-HDGM). These models employ a classic mixed-effect regression structure with embedded spatiotemporal dynamics to model georeferenced data observed in a functional domain. Thus, the parameters of interest are functions across this domain. The algorithm simultaneously selects the relevant spline basis functions and regressors that are used to model the fixed-effects relationship between the response variable and the covariates. In this way, it automatically shrinks to zero irrelevant parts of the functional coefficients or the entire effect of irrelevant regressors. The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (LASSO) penalty function, wherein the weights are obtained by the unpenalised f-HDGM maximum-likelihood estimators. The computational burden of maximisation is drastically reduced by a local quadratic approximation of the likelihood. Through a Monte Carlo simulation study, we analysed the performance of the algorithm under different scenarios, including strong correlations among the regressors. We showed that the penalised estimator outperformed the unpenalised estimator in all the cases we considered. We applied the algorithm to a real case study in which the recording of the hourly nitrogen dioxide concentrations in the Lombardy region in Italy was modelled as a functional process with several weather and land cover covariates.
翻译:我们为功能隐蔽的动态地理统计模型(f-HDGM)提议了一个新型模型选择算法。这些模型采用典型的混合效果回归结构,其内嵌的双向时动态动态为在功能领域观察到的地理参照数据模型。因此,利益参数是整个域的函数。该算法同时选择相关样条基函数和递增器,用于模拟反应变量和变量之间的固定效应关系。这样,它自动缩到功能栏系数的零无关部分或无关的递增者的全部影响。该算法以迭代优化为基础,并使用适应性最低绝对缩缩缩和选择操作者(LASSO)的罚款功能,其中加权由不依赖的f-HDGM最大似利差估计器获得。最大最大化的计算负担由于对可能性的局部四分点贴近而大幅降低。通过蒙特卡洛模拟研究,我们分析了不同情景下的演算法的绩效,包括机率强的互连带关系。我们展示了在轨迹中对数个轨道记录浓度进行了模拟研究。我们研究后,对数个轨道记录区域进行了模拟的模拟后,我们已将分析。我们进行了了对数变的对数个轨道记录进行了分析。