Herein, the Hidden Markov Model is expanded to allow for Markov chain observations. In particular, the observations are assumed to be a Markov chain whose one step transition probabilities depend upon the hidden Markov chain. An Expectation-Maximization analog to the Baum-Welch algorithm is developed for this more general model to estimate the transition probabilities for both the hidden state and for the observations as well as to estimate the probabilities for the initial joint hidden-state-observation distribution. A believe state or filter recursion to track the hidden state then arises from the calculations of this Expectation-Maximization algorithm. A dynamic programming analog to the Viterbi algorithm is also developed to estimate the most likely sequence of hidden states given the sequence of observations.
翻译:在此, 隐藏 Markov 模型被扩展, 以允许 Markov 链式观测。 特别是, 观测假设是一个 Markov 链式链式, 其一步过渡概率取决于隐藏 Markov 链式的概率。 开发了一个类似于 Baum- Welch 算法的期待- 最大化模型, 用于这一更一般的模型, 以估计隐藏状态和观察的过渡概率, 并估计初始隐藏- 国家- 观察联合分布的概率 。 相信的状态或过滤器递归以跟踪隐藏状态的概率, 从而从这一期望- 最大化算法的计算中产生。 也开发了一个Viterbi 算法的动态编程模拟, 以根据观察序列估计隐藏状态的最可能序列 。