Assume that a graph $G$ models a detection system for a facility with a possible ``intruder," or a multiprocessor network with a possible malfunctioning processor. We consider the problem of placing detectors at a subset of vertices in $G$ to determine the location of an intruder if there is any. Many types of detection systems have been defined for different sensor capabilities; in particular, we focus on Identifying Codes, where each detector can determine whether there is an intruder within its closed neighborhood. In this research we explore a fault-tolerant variant of identifying codes applicable to real-world systems. Specifically, error-detecting identifying codes permit a false negative transmission from any single detector. We investigate minimum-sized error-detecting identifying codes in several classes of graphs, including cubic graphs and infinite grids, and show that the problem of determining said minimum size in arbitrary graphs is NP-complete.
翻译:假设一个图形 $G$ 为“ 入侵者” 设施或多处理器网络的探测系统提供“ 入侵者” 可能的“ 入侵者”, 或可能发生故障处理器的多处理器网络的探测系统。 我们考虑将探测器放在一个脊椎子子上的问题, 以便确定入侵者的位置。 许多类型的探测系统都为不同的感应能力所定义; 特别是, 我们侧重于识别代码, 每个探测器都可以确定是否在其封闭的邻里有入侵者。 在这个研究中, 我们探索了识别适用于现实世界系统的代码的错误容忍变量。 具体地说, 检测错误的识别代码允许从任何单一的探测器中进行虚假的负传输。 我们调查了包括立方图和无限网格在内的数类图形中最小大小的错误识别代码, 并表明在任意图形中确定上述最小尺寸的问题是NP- 完整的。