Predicting smartphone users location with WiFi fingerprints has been a popular research topic recently. In this work, we propose two novel deep learning-based models, the convolutional mixture density recurrent neural network and the VAE-based semi-supervised learning model. The convolutional mixture density recurrent neural network is designed for path prediction, in which the advantages of convolutional neural networks, recurrent neural networks and mixture density networks are combined. Further, since most of real-world datasets are not labeled, we devise the VAE-based model for the semi-supervised learning tasks. In order to test the proposed models, we conduct the validation experiments on the real-world datasets. The final results verify the effectiveness of our approaches and show the superiority over other existing methods.
翻译:以 WiFi 指纹预测智能手机用户位置是最近一个受欢迎的研究课题。 在这项工作中,我们提出了两个新型的深层次学习模型,即革命混合密度经常神经网络和VAE半监督的学习模型。 革命混合密度经常神经网络的设计是为了进行路径预测,其中结合进化神经网络、经常神经网络和混合密度网络的优势。 此外,由于大多数现实世界数据集没有标注,我们为半监督的学习任务设计了VAE模型。为了测试拟议的模型,我们在现实世界数据集上进行了验证实验。最终结果验证了我们方法的有效性,并展示了相对于其他现有方法的优势。