Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structure to create cloze-style questions from these base documents; pre-trains a powerful neural network on the cloze style questions; and further fine-tunes the model on the labeled examples. We evaluate our proposed system across three diverse datasets from different domains, and find it to be highly effective with very little labeled data. We attain more than 50% F1 score on SQuAD and TriviaQA with less than a thousand labelled examples. We are also releasing a set of 3.2M cloze-style questions for practitioners to use while building QA systems.
翻译:采掘问题解答任务(QA)近期的深层次学习模式的成功取决于是否有大量附加注释的子公司。 但是,大域特定附加注释的子公司有限,建造费用昂贵。 在这项工作中,我们设想了一个系统,让终端用户指定一套基础文件和几个贴标签的例子。我们的系统利用文件结构从这些基础文件中产生凝块式的问题;在凝块风格问题上建立强大的神经网络;进一步微调标签范例上的模型。我们评估了我们建议在不同领域的三个不同数据集中的系统,发现它非常有效,使用很少贴标签的数据。我们在SQuAD和TriviaQA上取得了超过50%的F1分,使用不到一千个贴标签的例子。我们还发布了一套3.2M Cluze风格的问题,供开业者在建立QA系统时使用。