Deep learning has been shown successful in a number of domains, ranging from acoustics, images to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, a significant amount of research efforts have been devoted to this area, greatly advancing graph analyzing techniques. In this survey, we comprehensively review different kinds of deep learning methods applied to graphs. We divide existing methods into three main categories: semi-supervised methods including Graph Neural Networks and Graph Convolutional Networks, unsupervised methods including Graph Autoencoders, and recent advancements including Graph Recurrent Neural Networks and Graph Reinforcement Learning. We then provide a comprehensive overview of these methods in a systematic manner following their history of developments. We also analyze the differences of these methods and how to composite different architectures. Finally, we briefly outline their applications and discuss potential future directions.
翻译:从声学、图像到自然语言处理等若干领域,深层次的学习都证明是成功的。然而,对无处不在的图形数据应用深层次的学习,由于图表的独特性,是非三边的。最近,大量研究工作都致力于这个领域,大大推进了图形分析技术。在这次调查中,我们全面审查了适用于图形的不同类型的深层次学习方法。我们把现有方法分为三大类:半监督方法,包括图神经网络和图变网络,未监督的方法,包括图态自动计算机,以及近期的进展,包括图态常态神经网络和图表强化学习。我们随后系统地概述了这些方法的发展史。我们还分析了这些方法的不同之处和如何综合不同的结构。最后,我们简要概述了这些方法的应用,并讨论了潜在的未来方向。