In this paper, a semantic communication framework for image transmission is developed. In the investigated framework, a set of servers cooperatively transmit images to a set of users utilizing semantic communication techniques. To evaluate the performance of studied semantic communication system, a multimodal metric is proposed to measure the correlation between the extracted semantic information and the original image. To meet the ISS requirement of each user, each server must jointly determine the semantic information to be transmitted and the resource blocks (RBs) used for semantic information transmission. We formulate this problem as an optimization problem aiming to minimize each server's transmission latency while reaching the ISS requirement. To solve this problem, a value decomposition based entropy-maximized multi-agent reinforcement learning (RL) is proposed, which enables servers to coordinate for training and execute RB allocation in a distributed manner to approach to a globally optimal performance with less training iterations. Compared to traditional multi-agent RL, the proposed RL improves the valuable action exploration of servers and the probability of finding a globally optimal RB allocation policy based on local observation. Simulation results show that the proposed algorithm can reduce the transmission delay by up to 16.1% compared to traditional multi-agent RL.
翻译:在本文中,开发了一个图像传输的语义通信框架。在调查的框架内,一组服务器将图像合作传送给一组用户,使用语义通信技术。为了评估所研究的语义通信系统的性能,建议采用多式联运指标来衡量所提取的语义信息与原始图像之间的相互关系。为满足每个用户对国际空间站的要求,每个服务器必须共同确定要传输的语义信息以及用于语义信息传输的资源区块(RBs)。我们把这个问题作为一个优化问题提出来,目的是在达到国际空间站的要求时,最大限度地减少每个服务器的传输延缓时间。为了解决这个问题,建议采用基于 entropy- magimiziziz化多试剂强化学习(RL) 的价值解构件,使服务器能够协调培训和以分配的方式执行RB分配,以达到全球最佳性绩效,减少培训的频率。与传统的多试管RL相比,拟议的RL改进了服务器的宝贵行动探索,以及根据当地观测找到全球最佳的 RB分配政策的可能性。模拟结果显示,拟议的RML 16 将延迟传输到传统的RVRVL 。