Robotics research has been focusing on cooperative multi-agent problems, where agents must work together and communicate to achieve a shared objective. To tackle this challenge, we explore imitation learning algorithms. These methods learn a controller by observing demonstrations of an expert, such as the behaviour of a centralised omniscient controller, which can perceive the entire environment, including the state and observations of all agents. Performing tasks with complete knowledge of the state of a system is relatively easy, but centralised solutions might not be feasible in real scenarios since agents do not have direct access to the state but only to their observations. To overcome this issue, we train end-to-end Neural Networks that take as input local observations obtained from an omniscient centralised controller, i.e., the agents' sensor readings and the communications received, producing as output the action to be performed and the communication to be transmitted. This study concentrates on two cooperative tasks using a distributed controller: distributing the robots evenly in space and colouring them based on their position relative to others. While an explicit exchange of messages between the agents is required to solve the second task, in the first one, a communication protocol is unnecessary, although it may increase performance. The experiments are run in Enki, a high-performance open-source simulator for planar robots, which provides collision detection and limited physics support for robots evolving on a flat surface. Moreover, it can simulate groups of robots hundreds of times faster than real-time. The results show how applying a communication strategy improves the performance of the distributed model, letting it decide which actions to take almost as precisely and quickly as the expert controller.


翻译:机器人研究一直侧重于合作性多试剂问题, 代理商必须合作并交流, 以实现共同的目标。 为了应对这一挑战, 我们探索模仿学习算法。 这些方法通过观察专家的演示来学习控制器, 比如一个集中的无意识控制器的行为, 它可以感知整个环境, 包括所有代理商的状态和观察。 完全了解系统状态的任务相对容易完成, 但是在现实情况下集中化解决方案可能不可行, 因为代理商不能直接接触州, 只能通过他们的意见来进行交流。 为了克服这个问题, 我们训练端到端的神经网络, 将从无意识中央控制器( 即, 代理器传感器的阅读和收到的通信作为输出, 包括所有代理商的状态和观察。 这项研究侧重于使用分布式控制器执行两项合作任务: 将机器人在空间中平均分配, 并且根据他们与其他人的相对位置进行彩色。 虽然代理商之间需要进行明确的通信交流, 要解决第二个任务, 端端到端端端端端端端端端端的网络网络, 将快速的当地观测结果作为高级的实验, 高级的操作是不必要操作程序, 它可以让机器人的操作更精确的轨道, 。 操作可以让机器人的操作更精确的操作更精确的操作更精确的操作, 。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员