项目名称: Bi/Yb和Bi/Tm共掺杂玻璃的宽带近红外发光光谱调控

项目编号: No.51302202

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 阮健

作者单位: 武汉理工大学

项目金额: 25万元

中文摘要: 近年来,新型铋(Bi)离子掺杂材料因具备作为新一代宽带光放大器增益介质的潜力而倍受关注。但因缺乏直接实验证明和表征手段,目前Bi玻璃的宽带近红外发光机理仍不明确。此外,目前Bi玻璃和玻璃光纤还存在着对商用半导体激光器的吸收效率低,增益带宽不平坦,且难以与实用的光通讯窗口相匹配等问题。 基于以上背景,本项目拟开展对新型Bi/Yb和Bi/Tm共掺杂玻璃及其发光光谱调控的研究。通过深入研究玻璃中Bi离子与Yb3+离子、Bi离子与Tm3+离子间的能量传递机理,系统探索基于Bi离子配位环境和基质声子能量调控的Bi玻璃光谱性能调控方法,利用能量传递提高Bi玻璃的吸收效率,增强玻璃的荧光强度和光增益,利用共激发效应,改善Bi玻璃的荧光平坦特性。并利用稀土离子4f-4f电子跃迁的线状发射和吸收作为探针,间接推测Bi发光中心的能级结构,加深对其发光机理的理解,推动Bi掺杂材料设计理论和可控制备方法的发展。

中文关键词: 铋离子;宽带近红外发光;发光光谱调控;稀土离子;能量传递

英文摘要: In recent years, novel bismuth doped materials with of unique broadband luminescence and optical amplification have attracted much attention because they are potential gain media for the next generation broadband optical amplifier. However, the mechanism of broadband near-infrared luminescence from bismuth active centers is still unclear now, because of lack of direct experimental proofs and chracterization methods. And the absorbance efficiency of bismuth-doped materials is relative low with the excitation of commerical laser diodes. Furthermore, the reported bandwidth of the optical gain in Bi-doped glass or glass fiber is not flat and cannot fully match with the current practical applied optical commuication window till now. Based on above mentioned research progress, here a fundenmental study on novel Bi/Yb codoped and Bi/Tm codoped glasses and the spectral tuning of their luminescence was proposed. The energy transfer mechanism between bismuth ion and Yb3+ ion, and between bismuth ion and Tm3+ ion will further investigated. Then the spectral tuing method of the broadband near-infrared luminescence from Bi-doped glass will be systemic explored, by changing the coordination environment of bismuth active center and the phonon energy of the glass host. The absorption efficiecency could be increased through the

英文关键词: bismuth ion;broadband near-infrared luminescence;spectral tuning of luminescence;rare earth ion;energy transfer

成为VIP会员查看完整内容
0

相关内容

区块链赋能“碳达峰碳中和”白皮书 ,41页pdf
专知会员服务
37+阅读 · 2022年3月26日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
87+阅读 · 2021年3月6日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
16+阅读 · 2020年5月20日
小贴士
相关VIP内容
区块链赋能“碳达峰碳中和”白皮书 ,41页pdf
专知会员服务
37+阅读 · 2022年3月26日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
87+阅读 · 2021年3月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员