We consider online convex optimization (OCO) over a heterogeneous network with communication delay, where multiple local devices (workers) together with a central coordinator (master) execute a sequence of decisions to minimize the accumulation of time-varying global costs. The local data may not be independent or identically distributed, and the global cost functions may not be locally separable. Due to communication delay, neither the master nor the workers have in-time information about the current global cost function. We propose a new algorithm, termed Hierarchical OCO (HiOCO), which takes full advantage of the network heterogeneity in information timeliness and computation capacity to enable multi-step gradient descent at both the workers and the master. We analyze the impacts of the unique hierarchical architecture, multi-slot delay, and gradient estimation error to derive upper bounds on the dynamic regret of HiOCO, which measures the gap of costs between HiOCO and an offline globally optimal performance benchmark. We further apply HiOCO to an online cooperative precoding design problem in multiple transmission/reception point (TRP) wireless networks with non-ideal backhaul links for 5G New Radio. Simulation results demonstrate substantial performance gain of HiOCO over existing alternatives.


翻译:我们认为,在一个具有通信延迟的多端网络上,在线 convex优化(OCO)是一个具有通信延迟的多端网络,其中多个本地设备(工人)与中央协调员(主管)一起执行一系列决定,以尽量减少时间变化的全球成本累积。当地数据可能不是独立或完全分布的,全球成本功能可能无法在本地分离。由于通信延迟,船长和工人都没有及时了解当前全球成本功能的及时性信息。我们提出了一个新的算法,称为HiOCO(HiOCO),它充分利用了网络在信息及时性和计算能力方面的异质性,使工人和硕士都能够实现多级梯度下降。我们分析了独特的等级结构、多行拖延和梯度估计错误的影响,以获得HiOCO动态遗憾的上限。HiOCO和离线全球最佳绩效基准之间的成本差距。我们进一步将HiOCO应用于多个传输/感知点(TRP)的在线合作前编码设计问题,其信息及时性和计算能力使工人和硕士都能够使工人和硕士都能够进行多级梯度梯度梯度梯级梯度下降的连接。我们分析了5G新无线电台新无线电模拟模拟测试现有性替代软件的功能获得的结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
222+阅读 · 2020年6月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员