Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however led to increased performance (local optima) without significant architectural breakthroughs, thus preventing truly novel solutions from being reached. In this work we 1) are the first to investigate casting NAS as a problem of finding the optimal network generator and 2) we propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types, yet only requiring few continuous hyper-parameters. This greatly reduces the dimensionality of the problem, enabling the effective use of Bayesian Optimisation as a search strategy. At the same time, we expand the range of valid architectures, motivating a multi-objective learning approach. We demonstrate the effectiveness of this strategy on six benchmark datasets and show that our search space generates extremely lightweight yet highly competitive models.
翻译:最初提出神经结构搜索(NAS)是为了在没有人类干预的情况下通过发现新的建筑模式实现最先进的性能,但在搜索空间设计方面过度依赖专家知识,导致在没有重大建筑突破的情况下提高了性能(本地选择),从而阻止了真正创新的解决方案的实现。在这项工作中,我们1号是第一个将NAS作为寻找最佳网络生成器的一个问题来调查的。2号我们提出了一个新的、等级的和基于图表的搜索空间,它能够代表极其庞大的网络类型,但只需要很少连续的超参数。这大大降低了问题的维度,使得能够有效利用巴耶西亚最佳化作为搜索战略。与此同时,我们扩大了有效结构的范围,鼓励一种多目标的学习方法。我们在六个基准数据集上展示了这一战略的有效性,并表明我们的搜索空间产生了非常轻但具有高度竞争力的模式。