For statistical decision problems with finite parameter space, it is well-known that the upper value (minimax value) agrees with the lower value (maximin value). Only under a generalized notion of prior does such an equivalence carry over to the case infinite parameter spaces, provided nature can play a prior distribution and the statistician can play a randomized strategy. Various such extensions of this classical result have been established, but they are subject to technical conditions such as compactness of the parameter space or continuity of the risk functions. Using nonstandard analysis, we prove a minimax theorem for arbitrary statistical decision problems. Informally, we show that for every statistical decision problem, the standard upper value equals the lower value when the $\sup$ is taken over the collection of all internal priors, which may assign infinitesimal probability to (internal) events. Applying our nonstandard minimax theorem, we derive several standard minimax theorems: a minimax theorem on compact parameter space with continuous risk functions, a finitely additive minimax theorem with bounded risk functions and a minimax theorem on totally bounded metric parameter spaces with Lipschitz risk functions.


翻译:对于与有限参数空间有关的统计决策问题,众所周知,上值(最小最大值)与较低值(最大值)一致。只有在先行的普遍概念下,这种等值才能传到案件无限参数空间,只要自然可以发挥先前的分布,统计员可以随机地运用策略。这一经典结果的各种扩展已经确立,但受参数空间的紧凑性或风险函数的连续性等技术条件的限制。使用非标准分析,我们证明对任意统计决策问题来说是一个微缩最大理论。非正式地说,我们表明,对于每一个统计决策问题,标准上值等于较低值,因为美元将超过所有内部前数的收集,这可能给(内部)事件带来无限的概率。应用我们的非标准微缩最大值理论,我们得出了几个标准的微模数个迷你峰:在具有连续风险功能的紧凑参数空间上,有受约束风险功能的微量添加微成像素,在完全约束的基模数参数空间上,有微缩成像值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员