For statistical decision problems with finite parameter space, it is well-known that the upper value (minimax value) agrees with the lower value (maximin value). Only under a generalized notion of prior does such an equivalence carry over to the case infinite parameter spaces, provided nature can play a prior distribution and the statistician can play a randomized strategy. Various such extensions of this classical result have been established, but they are subject to technical conditions such as compactness of the parameter space or continuity of the risk functions. Using nonstandard analysis, we prove a minimax theorem for arbitrary statistical decision problems. Informally, we show that for every statistical decision problem, the standard upper value equals the lower value when the $\sup$ is taken over the collection of all internal priors, which may assign infinitesimal probability to (internal) events. Applying our nonstandard minimax theorem, we derive several standard minimax theorems: a minimax theorem on compact parameter space with continuous risk functions, a finitely additive minimax theorem with bounded risk functions and a minimax theorem on totally bounded metric parameter spaces with Lipschitz risk functions.
翻译:对于与有限参数空间有关的统计决策问题,众所周知,上值(最小最大值)与较低值(最大值)一致。只有在先行的普遍概念下,这种等值才能传到案件无限参数空间,只要自然可以发挥先前的分布,统计员可以随机地运用策略。这一经典结果的各种扩展已经确立,但受参数空间的紧凑性或风险函数的连续性等技术条件的限制。使用非标准分析,我们证明对任意统计决策问题来说是一个微缩最大理论。非正式地说,我们表明,对于每一个统计决策问题,标准上值等于较低值,因为美元将超过所有内部前数的收集,这可能给(内部)事件带来无限的概率。应用我们的非标准微缩最大值理论,我们得出了几个标准的微模数个迷你峰:在具有连续风险功能的紧凑参数空间上,有受约束风险功能的微量添加微成像素,在完全约束的基模数参数空间上,有微缩成像值。