We introduce a novel statistical significance-based approach for clustering hierarchical data using semi-parametric linear mixed-effects models designed for responses with laws in the exponential family (e.g., Poisson and Bernoulli). Within the family of semi-parametric mixed-effects models, a latent clustering structure of the highest-level units can be identified by assuming the random effects to follow a discrete distribution with an unknown number of support points. We achieve this by computing {\alpha}-level confidence regions of the estimated support point and identifying statistically different clusters. At each iteration of a tailored Expectation Maximization algorithm, the two closest estimated support points for which the confidence regions overlap collapse. Unlike the related state-of-the-art methods that rely on arbitrary thresholds to determine the merging of close discrete masses, the proposed approach relies on conventional statistical confidence levels, thereby avoiding the use of discretionary tuning parameters. To demonstrate the effectiveness of our approach, we apply it to data from the Programme for International Student Assessment (PISA - OECD) to cluster countries based on the rate of innumeracy levels in schools. Additionally, a simulation study and comparison with classical parametric and state-of-the-art models are provided and discussed.


翻译:在半参数混合效应模型中,最高单位的潜在集合结构可以假设随机效应,以分散分布,支持点数目不详,从而确定最高单位的潜在集合结构。我们利用半参数线性混合效应模型将等级数据分组,采用半参数性线性混合效应模型(例如Poisson和Bernoulli)。在半参数性混合效应模型中,可以通过假设随机效应来跟踪离散分布和数量不明的支持点,从而确定最高单位的潜在集合结构。我们通过计算估计支持点的偏偏偏信任区和识别统计上不同的组群来实现这一点。在定制的预期最大化算法的每一次迭代中,信任区相互重叠的两个最接近的估计支持点是两个最接近的估计支持点。与依赖任意阈值来确定离散质量合并的相关最新方法不同,拟议方法依赖于传统的统计信任水平,从而避免使用酌定调整参数。为了证明我们的方法的有效性,我们将其应用于国际学生评估方案(PISA-OECD)根据学校的数值水平向分组国家提供的数据。此外,模拟研究和比较与古典准参数和状态模型是讨论的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员