Pose estimation is important for robotic perception, path planning, etc. Robot poses can be modeled on matrix Lie groups and are usually estimated via filter-based methods. In this paper, we establish the closed-form formula for the error propagation for the Invariant extended Kalman filter (IEKF) in the presence of random noises and apply it to vision-aided inertial navigation. We evaluate our algorithm via numerical simulations and experiments on the OPENVINS platform. Both simulations and the experiments performed on the public EuRoC MAV datasets demonstrate that our algorithm outperforms some state-of-art filter-based methods such as the quaternion-based EKF, first estimates Jacobian EKF, etc.
翻译:鼠标估计对于机器人感知、路径规划等非常重要。 机器人姿势可以以矩阵模型制成,通常通过过滤法进行估计。 在本文中,我们在随机噪音面前为异端扩展卡尔曼过滤器(IEKF)的错误传播建立封闭式公式,并将其应用于视觉辅助惯性导航。 我们通过数字模拟和在 OpenVINS 平台上的实验来评估我们的算法。 模拟和在公众 EuRoC MAV 数据集上进行的实验都表明,我们的算法优于一些最先进的过滤法, 如基于四环的 EKF, 首次估计了 Jacobian EKF 等 。