The application of a nonlinear filtering function to a Linear Feedback Shift Register (LFSR) is a general technique for designing pseudorandom sequence generators with cryptographic application. In this paper, we investigate the equivalence between different nonlinear filtering functions applied to distinct LFSRs. It is a well known fact that given a binary sequence generated from a pair (nonlinear filtering function, LFSR), the same sequence can be generated from any other LFSR of the same length by using another filtering function. However, until now no solution has been found for the problem of computing such an equivalent. This paper analyzes the specific case in which the reciprocal LFSR of a given register is used to generate an equivalent of the original nonlinear filtering function. The main advantage of the contribution is that weaker equivalents can be computed for any nonlinear filter, in the sense that such equivalents could be used to cryptanalyze apparently secure generators. Consequently, to evaluate the cryptographic resistance of a sequence generator, the weakest equivalent cipher should be determined and not only a particular instance.
翻译:将非线性过滤功能应用到线性反馈 Shift登记册(LFSR)是设计具有加密应用程序的伪随机序列生成器的一般技术。 在本文中,我们调查了适用于不同LFSR的不同非线性过滤功能之间的等同性。众所周知,鉴于一对(非线性过滤功能,LFSR)产生的二进制序列,使用另一个过滤功能可以从同一长度的其他任何LFSR生成同样的序列。然而,直到目前为止,还没有找到办法解决计算这种等同器的问题。本文分析了使用某一登记册的对等的LFSR生成原非线性过滤功能的等同性具体案例。主要好处是,可以对任何非线性过滤器计算较弱的等同物,即这种等同物可用于加密显然安全的发电机。因此,为了评估序列生成器的加密抵抗力,应当确定最弱等同的密码,而不仅仅是一个特定的例子。