We consider the problem of navigating a mobile robot towards a target in an unknown environment that is endowed with visual sensors, where neither the robot nor the sensors have access to global positioning information and only use first-person-view images. While prior work in sensor network-based navigation uses explicit mapping and planning techniques, and is often aided by external positioning systems, we propose a vision-only based learning approach that leverages a Graph Neural Network (GNN) to encode and communicate relevant viewpoint information to the mobile robot. During navigation, the robot is guided by a model that we train through imitation learning to approximate optimal motion primitives, thereby predicting the effective cost-to-go (to the target). In our experiments, we first demonstrate generalizability to previously unseen environments with various sensor layouts. The results show that communication among the sensors and robot facilitates a significant improvement in success rate while decreasing path detour mean and variability. This is done without requiring a global map, positioning data, nor pre-calibration of the sensor network. Second, we perform a zero-shot transfer of our model from simulation to the real world. To this end, we train a`translator' model that translates between {latent encodings of} real and simulated images so that the navigation policy (which is trained entirely in simulation) can be used directly on the real robot, without additional fine-tuning. Physical experiments demonstrate the feasibility of our approach in various cluttered environments.
翻译:我们考虑了在一个拥有视觉传感器的未知环境中将移动机器人引向目标的问题,在这种环境中,机器人和传感器都无法获取全球定位系统信息,只能使用第一人看图像。虽然先前在传感器网络导航中的工作使用了明确的绘图和规划技术,而且常常得到外部定位系统的帮助,但我们提议了一种基于愿景的学习方法,利用图形神经网络(GNN)将相关观点信息编码和传送给移动机器人。在导航过程中,机器人以一个模型为指导,我们通过模拟学习来培训模型,以近似最佳运动原始,从而预测有效的成本到目标。在我们的实验中,我们首先以各种传感器布局向先前看不见的环境展示了通用性。结果显示,传感器和机器人之间的通信有助于大大提高成功率,同时降低路径偏差和变异性。这样做不需要全球地图、定位数据或传感器网络的预先校正。第二,我们通过模拟将模型从模拟转换为真实世界,从而预测有效的成本到目标。我们首先通过各种传感器布局,我们从这个实验展示了以前看不到的环境。我们直接使用了一种真正的导航模型,因此,我们用这个模型来进行真正的模版化的模化的模型翻译。