In recent years, patch representation learning has emerged as a necessary research direction for exploiting the capabilities of machine learning in software generation. These representations have driven significant performance enhancements across a variety of tasks involving code changes. While the progress is undeniable, a common limitation among existing models is their specialization: they predominantly excel in either predictive tasks, such as security patch classification, or in generative tasks such as patch description generation. This dichotomy is further exacerbated by a prevalent dependency on potentially noisy data sources. Specifically, many models utilize patches integrated with Abstract Syntax Trees (AST) that, unfortunately, may contain parsing inaccuracies, thus acting as a suboptimal source of supervision. In response to these challenges, we introduce PATCH-CLIP, a novel pre-training framework for patches and natural language text. PATCH-CLIP deploys a triple-loss training strategy for 1) patch-description contrastive learning, which enables to separate patches and descriptions in the embedding space, 2) patch-description matching, which ensures that each patch is associated to its description in the embedding space, and 3) patch-description generation, which ensures that the patch embedding is effective for generation. These losses are implemented for joint learning to achieve good performance in both predictive and generative tasks involving patches. Empirical evaluations focusing on patch description generation, demonstrate that PATCH-CLIP sets new state of the art performance, consistently outperforming the state-of-the-art in metrics like BLEU, ROUGE-L, METEOR, and Recall.
翻译:暂无翻译