We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack, while the follower chooses a feasible packing maximizing his own profit. The leader's aim is to optimize a linear objective function in the capacity and in the follower's solution, but with respect to different item values. We address a stochastic version of this problem where the follower's profits are uncertain from the leader's perspective, and only a probability distribution is known. Assuming that the leader aims at optimizing the expected value of her objective function, we first observe that the stochastic problem is tractable as long as the possible scenarios are given explicitly as part of the input, which also allows to deal with general distributions using a sample average approximation. For the case of independently and uniformly distributed item values, we show that the problem is #P-hard in general, and the same is true even for evaluating the leader's objective function. Nevertheless, we present pseudo-polynomial time algorithms for this case, running in time linear in the total size of the items. Based on this, we derive an additive approximation scheme for the general case of independently distributed item values, which runs in pseudo-polynomial time.
翻译:我们考虑一个双层连续的背包问题, 领导人控制了 knapsack 的能力, 而随行者选择了一个可行的包装, 从而最大限度地增加他自己的利润。 领头者的目标是在能力和随行者解决方案中优化线性目标功能, 但对于不同的项目值。 我们处理的是这个问题的随机化版本, 即从领导的角度看, 随行者的利润不确定, 并且只知道概率分布 。 假设领头者的目标是优化她目标功能的预期值, 我们首先观察到, 只要可能的情况作为输入的一部分被明确给出, 可能的情况是可移动的, 并且也允许使用样本平均近似来处理一般分布的分布。 对于独立和统一分布的项目值, 我们表明问题一般是 # P- 硬的, 而在评价领行者目标功能时, 情况也是如此。 然而, 我们为这个案子提出假的极性时间算算法, 以时间线性的方式运行在项目的总尺寸中。 基于这个时间, 我们从一个独立分布的模型中, 得出一个独立分布的模型。