Given two object images, how can we explain their differences in terms of the underlying object properties? To address this question, we propose Align-Deform-Subtract (ADS) -- an interventional framework for explaining object differences. By leveraging semantic alignments in image-space as counterfactual interventions on the underlying object properties, ADS iteratively quantifies and removes differences in object properties. The result is a set of "disentangled" error measures which explain object differences in terms of the underlying properties. Experiments on real and synthetic data illustrate the efficacy of the framework.
翻译:给两个对象图像, 我们如何解释其基本对象属性的差异? 为了解决这个问题, 我们提出一个用于解释对象差异的干预性框架 。 通过利用图像空间的语义对齐作为基础物体属性的反事实干预, ADS 迭代地量化并消除对象属性的差异 。 其结果是一套“ 分解” 错误计量方法, 用以解释基础属性中的对象差异 。 对真实和合成数据的实验显示了框架的有效性 。