In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct $\phi$, an approximate distance function to the boundary of a domain. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $\phi$ multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries. Benchmark problems in 1D for linear elasticity, advection-diffusion, and beam bending; and in 2D for the Poisson equation, biharmonic equation, and the nonlinear Eikonal equation are considered. The approach extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneneous Dirichlet boundary conditions over the 4D hypercube. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.
翻译:在本文中, 我们引入基于距离的新方法, 在物理知情深度神经网络中精确地设置边界条件。 在满足Drichlet边界条件方面, 在网状层和粒子方法中, 挑战是众所周知的。 这个问题还关系到物理知情神经网络( PINN) 的开发, 以解决部分差异方程式。 我们在人工神经网络中引入几何- 认知实验功能, 以改善对部分差异方程的深层次学习培训。 为此, 我们使用建设性的固体离心线( R- 功能) 和普通的巴里中心坐标( 平均值潜在字段) 的概念来构建 $\phi$, 一个接近网状平面神经网络网络( PINNNN), 测试功能以美元为倍。 我们用直线型直线型直线式直线式直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直路, 直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直路路路路路路路路路路路路路路路路路路路路路路路路路路路, 、直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直