We study the numerical solution of scalar time-harmonic wave equations on unbounded domains which can be split into a bounded interior domain of primary interest and an exterior domain with separable geometry. To compute the solution in the interior domain, approximations to the Dirichlet-to-Neumann (DtN) map of the exterior domain have to be imposed as transparent boundary conditions on the artificial coupling boundary. Although the DtN map can be computed by separation of variables, it is a nonlocal operator with dense matrix representations, and hence computationally inefficient. Therefore, approximations of DtN maps by sparse matrices, usually involving additional degrees of freedom, have been studied intensively in the literature using a variety of approaches including different types of infinite elements, local non-reflecting boundary conditions, and perfectly matched layers. The entries of these sparse matrices are derived analytically, e.g. from transformations or asymptotic expansions of solutions to the differential equation in the exterior domain. In contrast, in this paper we propose to `learn' the matrix entries from the DtN map in its separated form by solving an optimization problem as a preprocessing step. Theoretical considerations suggest that the approximation quality of learned infinite elements improves exponentially with increasing number of infinite element degrees of freedom, which is confirmed in numerical experiments. These numerical studies also show that learned infinite elements outperform state-of-the-art methods for the Helmholtz equation. At the same time, learned infinite elements are much more flexible than traditional methods as they, e.g., work similarly well for exterior domains involving strong reflections, for example, for the atmosphere of the Sun, which is strongly inhomogeneous and exhibits reflections at the corona.


翻译:我们研究在无约束域上的卡路里时间调和波波方程式的数值解决方案,这些方程式可以分割成一个主要兴趣的封闭的内部域和外部域,并带有可分离的几何。为了在内部域计算解决方案,外部域图近似Drichlet-to-Neumann(DtN)地图必须作为人工联结边界的透明边界条件强加于人。虽然DtN地图可以通过变量的分解来计算,但它是一个非本地的操作器,其矩阵显示密度很大,因此计算效率很低。因此,在文献中大量研究DtN地图以稀释基质(通常涉及更多程度的自由)接近DtN的内域。在文献中采用多种方法,包括不同种类的无限元素、当地非反射边界条件和完全匹配的层。这些稀释矩阵的条目是从分析角度,例如变异或对外部域差异方程式的扩展。相比之下,我们建议用“精细的矩阵矩阵”以稀释式矩阵矩阵矩阵的近似值输入,通常包含更多自由度自由度元素的近似度,在模型的模型分析中显示模型的模型的模型的模型的演化过程,其演化过程的演化过程的演化过程的演化过程,其演化过程的演化过程的演化过程的演化过程的演化过程的演化过程,其演化过程的演化过程的演化过程的演化过程。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
11+阅读 · 2021年2月17日
Learning to Importance Sample in Primary Sample Space
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员