Overparametrized neural networks, where the number of active parameters is larger than the sample size, prove remarkably effective in modern deep learning practice. From the classical perspective, however, much fewer parameters are sufficient for optimal estimation and prediction, whereas overparametrization can be harmful even in the presence of explicit regularization. To reconcile this conflict, we present a generalization theory for overparametrized ReLU networks by incorporating an explicit regularizer based on the scaled variation norm. Interestingly, this regularizer is equivalent to the ridge from the angle of gradient-based optimization, but is similar to the group lasso in terms of controlling model complexity. By exploiting this ridge-lasso duality, we show that overparametrization is generally harmless to two-layer ReLU networks. In particular, the overparametrized estimators are minimax optimal up to a logarithmic factor. By contrast, we show that overparametrized random feature models suffer from the curse of dimensionality and thus are suboptimal.


翻译:过度平衡的神经网络,其主动参数数量大于抽样规模,在现代深层学习实践中证明非常有效。 但是,从古典角度看,参数要少得多,就足以进行最佳估计和预测,而过度平衡即使存在明确的正规化,也可能有害。为了调和这一冲突,我们提出了一个过度平衡的ReLU网络的概括理论,根据比例变异规范引入一个明确的常规化器。有趣的是,这一常规化器相当于从梯度优化角度出发的脊脊,但在控制模型复杂性方面与群状正方形相似。通过利用这种脊脊-弧索的双重性,我们表明过度平衡通常对双层的ReLU网络无害。特别是,过度平衡的估量是最小的负负值,与逻辑性系数相匹配。相比之下,我们发现过度匹配的随机特征模型受到维度的诅咒,因此不那么完美。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月3日
Arxiv
0+阅读 · 2021年7月31日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员