In prescriptive analytics, the decision-maker observes historical samples of $(X, Y)$, where $Y$ is the uncertain problem parameter and $X$ is the concurrent covariate, without knowing the joint distribution. Given an additional covariate observation $x$, the goal is to choose a decision $z$ conditional on this observation to minimize the cost $\mathbb{E}[c(z,Y)|X=x]$. This paper proposes a new distributionally robust approach under Wasserstein ambiguity sets, in which the nominal distribution of $Y|X=x$ is constructed based on the Nadaraya-Watson kernel estimator concerning the historical data. We show that the nominal distribution converges to the actual conditional distribution under the Wasserstein distance. We establish the out-of-sample guarantees and the computational tractability of the framework. Through synthetic and empirical experiments about the newsvendor problem and portfolio optimization, we demonstrate the strong performance and practical value of the proposed framework.
翻译:在规范性分析中,决策者观察的是美元(X,Y)的历史样本,其中Y美元是不确定的问题参数,X美元是同时的共变体,而不知道共同分布情况。在另外的共变观察中,x美元的目标是选择一个以这一观察为条件的z美元决定,以尽量减少成本[c(z,Y) ⁇ X=x]美元[c(z,Y) ⁇ X=x]美元]。本文提议在瓦塞尔斯坦模棱两可的套下采取新的分配稳健办法,根据Nadaraya-Watson关于历史数据的估测器建造美元=x美元的名义分配。我们显示,名义分配与瓦塞斯坦距离下的实际有条件分配一致。我们建立了标本保证和框架的计算可动性。通过对新闻编辑问题和组合优化的合成实验,我们展示了拟议框架的强大性能和实际价值。