In this paper, the first large-scale application of multiscale-spectral generalized finite element methods (MS-GFEM) to composite aero-structures is presented. The crucial novelty lies in the introduction of A-harmonicity in the local approximation spaces, which in contrast to [Babuska, Lipton, Multiscale Model. Simul. 9, 2011] is enforced more efficiently via a constraint in the local eigenproblems. This significant modification leads to excellent approximation properties, which turn out to be essential to capture accurately material strains and stresses with a low dimensional approximation space, hence maximising model order reduction. The implementation of the framework in the DUNE software package, as well as a detailed description of all components of the method are presented and exemplified on a composite laminated beam under compressive loading. The excellent parallel scalability of the method, as well as its superior performance compared to the related, previously introduced GenEO method are demonstrated on two realistic application cases, including a C-shaped wing spar with complex geometry. Further, by allowing low-cost approximate solves for closely related models or geometries this efficient, novel technology provides the basis for future applications in optimisation or uncertainty quantification on challenging problems in composite aero-structures.


翻译:本文介绍了对复合气动结构首次大规模应用多光谱通用定质元件方法(MS-GFEM),这是首次大规模应用多光谱通用定质元件方法(MS-GFEM),其关键的新颖之处在于在当地近似空间采用A-和谐度,而与[Buska, Lipton, Mulbisal Model. Simul. 9, 2011]不同的是,通过对本地的基因问题的限制,使当地近距离空间采用[Buska, Lipton, Multural. 9, 2011]能够更有效地实施。这一方法的极佳的平行伸缩性,以及它与以前采用的相关GENEO方法相比的优异性,在两种现实的应用案例中,包括具有复杂几何测量的C型方形,此外,允许在与此密切相关的模型或地貌相近似的模型中采用低成本近似的解决方案,或这种具有挑战性的新式的合成的量化技术,为未来应用提供了基础。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2021年2月4日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员