VIP内容

使用Microsoft Excel中流行的数据挖掘技术,更好地理解机器学习方法。

软件工具和编程语言包接受数据输入并直接交付数据挖掘结果,对工作机制没有任何见解,并在输入和输出之间造成了鸿沟。这就是Excel可以提供帮助的地方。

Excel允许您以透明的方式处理数据。当您打开一个Excel文件时,数据立即可见,您可以直接使用它。在执行挖掘任务时,可以检查中间结果,从而更深入地理解如何操作数据和获得结果。这些是隐藏在软件工具和编程语言包中的模型构建过程的关键方面。

这本书教你通过Excel进行数据挖掘。您将了解当数据集不是很大时Excel在数据挖掘方面的优势。它可以为您提供数据挖掘的可视化表示,在结果中建立信心。您将手动完成每一个步骤,这不仅提供了一个主动学习体验,而且还告诉您挖掘过程是如何工作的,以及如何发现数据内部隐藏的模式。

你将学到什么

  • 使用可视化的一步一步的方法理解数据挖掘
  • 首先从理论上介绍了一种数据挖掘方法,然后是Excel的实现
  • 揭开机器学习算法背后的神秘面纱,让每个人都能接触到一个复杂的话题
  • 熟练使用Excel公式和函数
  • 获得数据挖掘和Excel的实际操作经验

这本书是给谁的

  • 任何对学习数据挖掘或机器学习感兴趣的人,特别是数据科学视觉学习者和擅长Excel的人,希望探索数据科学主题和/或扩展他们的Excel技能的人。建议对Excel有基本或初级的了解。
成为VIP会员查看完整内容
0
64

最新论文

In this paper, we investigate a cell-free massive MIMO system with both access points and user equipments equipped with multiple antennas over the Weichselberger Rayleigh fading channel. We study the uplink spectral efficiency (SE) based on a two-layer decoding structure with maximum ratio (MR) or local minimum mean-square error (MMSE) combining applied in the first layer and optimal large-scale fading decoding method implemented in the second layer, respectively. To maximize the weighted sum SE, an uplink precoding structure based on an Iteratively Weighted sum-MMSE (I-WMMSE) algorithm using only channel statistics is proposed. Furthermore, with MR combining applied in the first layer, we derive novel achievable SE expressions and optimal precoding structures in closed-form. Numerical results validate our proposed results and show that the I-WMMSE precoding can achieve excellent sum SE performance.

0
0
下载
预览
参考链接
Top
微信扫码咨询专知VIP会员