VIP内容

使用Microsoft Excel中流行的数据挖掘技术,更好地理解机器学习方法。

软件工具和编程语言包接受数据输入并直接交付数据挖掘结果,对工作机制没有任何见解,并在输入和输出之间造成了鸿沟。这就是Excel可以提供帮助的地方。

Excel允许您以透明的方式处理数据。当您打开一个Excel文件时,数据立即可见,您可以直接使用它。在执行挖掘任务时,可以检查中间结果,从而更深入地理解如何操作数据和获得结果。这些是隐藏在软件工具和编程语言包中的模型构建过程的关键方面。

这本书教你通过Excel进行数据挖掘。您将了解当数据集不是很大时Excel在数据挖掘方面的优势。它可以为您提供数据挖掘的可视化表示,在结果中建立信心。您将手动完成每一个步骤,这不仅提供了一个主动学习体验,而且还告诉您挖掘过程是如何工作的,以及如何发现数据内部隐藏的模式。

你将学到什么

  • 使用可视化的一步一步的方法理解数据挖掘
  • 首先从理论上介绍了一种数据挖掘方法,然后是Excel的实现
  • 揭开机器学习算法背后的神秘面纱,让每个人都能接触到一个复杂的话题
  • 熟练使用Excel公式和函数
  • 获得数据挖掘和Excel的实际操作经验

这本书是给谁的

  • 任何对学习数据挖掘或机器学习感兴趣的人,特别是数据科学视觉学习者和擅长Excel的人,希望探索数据科学主题和/或扩展他们的Excel技能的人。建议对Excel有基本或初级的了解。
成为VIP会员查看完整内容
0
61

最新论文

Accurately predicting the future motion of surrounding vehicles requires reasoning about the inherent uncertainty in driving behavior. This uncertainty can be loosely decoupled into lateral (e.g., keeping lane, turning) and longitudinal (e.g., accelerating, braking). We present a novel method that combines learned discrete policy rollouts with a focused decoder on subsets of the lane graph. The policy rollouts explore different goals given current observations, ensuring that the model captures lateral variability. Longitudinal variability is captured by our latent variable model decoder that is conditioned on various subsets of the lane graph. Our model achieves state-of-the-art performance on the nuScenes motion prediction dataset, and qualitatively demonstrates excellent scene compliance. Detailed ablations highlight the importance of the policy rollouts and the decoder architecture.

0
0
下载
预览
Top