The current paper studies the problem of minimizing a loss $f(\boldsymbol{x})$ subject to constraints of the form $\boldsymbol{D}\boldsymbol{x} \in S$, where $S$ is a closed set, convex or not, and $\boldsymbol{D}$ is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives $f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2$ involving large tuning constants $\rho$ and the squared Euclidean distance of $\boldsymbol{D}\boldsymbol{x}$ from $S$. The next iterate $\boldsymbol{x}_{n+1}$ of the corresponding proximal distance algorithm is constructed from the current iterate $\boldsymbol{x}_n$ by minimizing the majorizing surrogate function $f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2$. For fixed $\rho$ and a subanalytic loss $f(\boldsymbol{x})$ and a subanalytic constraint set $S$, we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.
翻译:目前的纸质研究如何最大限度地减少一个以美元为单位的损失, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位。 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元