A determinantal point process (DPP) on a collection of $M$ items is a model, parameterized by a symmetric kernel matrix, that assigns a probability to every subset of those items. Recent work shows that removing the kernel symmetry constraint, yielding nonsymmetric DPPs (NDPPs), can lead to significant predictive performance gains for machine learning applications. However, existing work leaves open the question of scalable NDPP sampling. There is only one known DPP sampling algorithm, based on Cholesky decomposition, that can directly apply to NDPPs as well. Unfortunately, its runtime is cubic in $M$, and thus does not scale to large item collections. In this work, we first note that this algorithm can be transformed into a linear-time one for kernels with low-rank structure. Furthermore, we develop a scalable sublinear-time rejection sampling algorithm by constructing a novel proposal distribution. Additionally, we show that imposing certain structural constraints on the NDPP kernel enables us to bound the rejection rate in a way that depends only on the kernel rank. In our experiments we compare the speed of all of these samplers for a variety of real-world tasks.
翻译:$M美元项目集的决定性点进程(DPP)是一个模型,由一个对称内核矩阵参数参数来参数,给每个子项都设定概率。最近的工作显示,去除内核对称限制,产生非对称DPP(NDPP),可以给机器学习应用带来显著的预测性能收益。然而,现有工作打开了可缩放式NDPP抽样的问题。只有一个基于Cholesky分解的已知的DPP抽样算法,可以直接适用于NDPP。不幸的是,其运行时间是立方美元,因此不至于大型项目集。在这项工作中,我们首先注意到,这种算法可以变成对低级结构的内核的线性运行。此外,我们通过构建一个新的建议分布,开发一个可缩放的子线性时间拒绝采样算法。此外,我们显示,在NDPP内核内核上设置某些结构性限制,可以使我们以真实的速度约束拒绝率,只取决于样本层的大小。