The interaction data used by recommender systems (RSs) inevitably include noises resulting from mistaken or exploratory clicks, especially under implicit feedbacks. Without proper denoising, RS models cannot effectively capture users' intrinsic preferences and the true interactions between users and items. To address such noises, existing methods mostly rely on auxiliary data which are not always available. In this work, we ground on Optimal Transport (OT) to globally match a user embedding space and an item embedding space, allowing both non-deep and deep RS models to discriminate intrinsic and noisy interactions without supervision. Specifically, we firstly leverage the OT framework via Sinkhorn distance to compute the continuous many-to-many user-item matching scores. Then, we relax the regularization in Sinkhorn distance to achieve a closed-form solution with a reduced time complexity. Finally, to consider individual user behaviors for denoising, we develop a partial OT framework to adaptively relabel user-item interactions through a personalized thresholding mechanism. Extensive experiments show that our framework can significantly boost the performances of existing RS models.
翻译:推荐人系统(RSs)使用的互动数据不可避免地包括错误或探索性点击产生的噪音,特别是在隐含反馈下。没有适当拆分,RS模型无法有效捕捉用户的内在偏好以及用户和项目之间的真正互动。为了解决这些噪音,现有方法主要依靠并非总能获得的辅助数据。在这项工作中,我们以最佳运输(OT)为基地,在全球匹配用户嵌入空间和嵌入空间项目,允许不深和深的RS模型在不受监督的情况下区分内在和骚动的相互作用。具体地说,我们首先通过Sinkhorn距离利用OT框架来计算连续的多至多个用户项目匹配得分。然后,我们放松Sinkhorn距离的规范,以便实现封闭式解决方案,降低时间复杂性。最后,为了考虑个体用户的消化行为,我们开发了一个部分OT框架,以通过个化的门槛机制适应再标签用户项目的互动。广泛的实验表明,我们的框架可以大大提升现有RS模型的性能。