项目名称: 高维Klein群的组合定理及其应用
项目编号: No.11201130
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 李浏兰
作者单位: 衡阳师范学院
项目金额: 22万元
中文摘要: 组合定理是Klein群理论的一个经典研究问题,围绕该问题已经有一系列的研究成果。我们已经把第一个Klein-Maskit组合定理推广到高维实Klein群上,本项目将继续开展该研究,拟将第二个Klein-Maskit组合定理推广到高维实Klein群上,并应用于高维实Klein群的构造和高维实双曲流形的分解与合成;同时探讨组合定理在高维复Klein群上的推广及应用,以此推进高维复双曲流形的研究。具体的研究内容是:(1)第二个Klein-Maskit组合定理在高维实Klein群上的推广;(2)高维实Klein群的构造;(3)高维Klein-Maskit组合定理在高维实双曲流形上的应用;(4)组合定理在高维复Klein群上的推广及应用。
中文关键词: 组合定理;Klein群;高维;流形;调和映射
英文摘要: In the theory of Kleinian groups, there is a classical research problem called combination theorems, on which there are a series of results. We have generalized the first Klein-Maskit combination theorem to high-dimensional real Kleinian groups. In this project, we will continue to carry out this research, plan to generalize the second Klein-Maskit combination theorem to high-dimensional real Kleinian groups and apply our results in the constructions of high-dimensioanl real Kleinian groups and the decompositions and compositions of high-dimensional real hyperbolic manifolds. Meanwhile, we will explore the generalizations and applications of combination theorems on high-dimensional complex Kleinian groups in order to promote the research of the high-dimensional complex hyperbolic manifolds. The detailed research contents are as follows: 1) the generalization of the second Klein-Maskit combination theorem to high-dimensional real Kleinian groups;2) the constructions of high-dimensional real Kleinian groups;3) the applications of Klein-Maskit combination theorems in high-dimensional real hyperbolic manifolds;4) the generalizations and applications of combination theorems in high-dimensional complex Klienian groups.
英文关键词: combination theorems;Kleinian group;higher dimension;manifold;harmonic mappings