The Degree Corrected Stochastic Block Model (DCSBM) was introduced by \cite{karrer2011stochastic} as a generalization of the stochastic block model in which vertices of the same community are allowed to have distinct degree distributions. On the modelling side, this variability makes the DCSBM more suitable for real life complex networks. On the statistical side, it is more challenging due to the large number of parameters when dealing with community detection. In this paper we prove that the penalized marginal likelihood estimator is strongly consistent for the estimation of the number of communities. We consider \emph{dense} or \emph{semi-sparse} random networks, and our estimator is \emph{unbounded}, in the sense that the number of communities $k$ considered can be as big as $n$, the number of nodes in the network.


翻译:调控区块模型 (DCSBM) 由\ cite{karrer2011stochistic} 引入 度校正区块模型(DCSBM), 以作为允许同一社区的脊椎有不同度分布的随机区块模型的概观。 在建模方面, 这种变异使 DSBM 更适合真实生活复杂的网络。 在统计方面, 处理社区检测时的参数数量众多, 这更具挑战性。 在本文中, 我们证明受处罚的边际概率估计器对于估计社区数量非常一致。 我们认为 \ emph{ dense} 或\ emph{ semi-sparse} 随机网络, 而我们的估计器是 \ emph{ unbound}, 也就是说, 所考虑的区块数可能大至 $n$, 网络中的节点数。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员