The Degree Corrected Stochastic Block Model (DCSBM) was introduced by \cite{karrer2011stochastic} as a generalization of the stochastic block model in which vertices of the same community are allowed to have distinct degree distributions. On the modelling side, this variability makes the DCSBM more suitable for real life complex networks. On the statistical side, it is more challenging due to the large number of parameters when dealing with community detection. In this paper we prove that the penalized marginal likelihood estimator is strongly consistent for the estimation of the number of communities. We consider \emph{dense} or \emph{semi-sparse} random networks, and our estimator is \emph{unbounded}, in the sense that the number of communities $k$ considered can be as big as $n$, the number of nodes in the network.
翻译:调控区块模型 (DCSBM) 由\ cite{karrer2011stochistic} 引入 度校正区块模型(DCSBM), 以作为允许同一社区的脊椎有不同度分布的随机区块模型的概观。 在建模方面, 这种变异使 DSBM 更适合真实生活复杂的网络。 在统计方面, 处理社区检测时的参数数量众多, 这更具挑战性。 在本文中, 我们证明受处罚的边际概率估计器对于估计社区数量非常一致。 我们认为 \ emph{ dense} 或\ emph{ semi-sparse} 随机网络, 而我们的估计器是 \ emph{ unbound}, 也就是说, 所考虑的区块数可能大至 $n$, 网络中的节点数。