Tensor ring (TR) decomposition is a simple but effective tensor network for analyzing and interpreting latent patterns of tensors. In this work, we propose a doubly randomized optimization framework for computing TR decomposition. It can be regarded as a sensible mix of randomized block coordinate descent and stochastic gradient descent, and hence functions in a double-random manner and can achieve lightweight updates and a small memory footprint. Further, to improve the convergence, especially for ill-conditioned problems, we propose a scaled version of the framework that can be viewed as an adaptive preconditioned or diagonally-scaled variant. Four different probability distributions for selecting the mini-batch and the adaptive strategy for determining the step size are also provided. Finally, we present the theoretical properties and numerical performance for our proposals.
翻译:张量环(TR)分解是用于分析和解释张量潜在模式的简单而有效的张量网络。在本文中,我们提出了一种用于计算TR分解的双重随机化优化框架。它可以被视为随机化块坐标下降和随机梯度下降的合理混合,因此以双重随机的方式运行,并且可以实现轻量级更新和小内存占用。此外,为了改善收敛性,特别是对于病态问题,我们提出了该框架的缩放版本,它可以被视为自适应预处理或对角缩放的变体。还提供了选择小批量的四种不同的概率分布以及确定步长的自适应策略。最后,我们介绍了我们提议的理论性质和数值性能。