In this paper, an efficient ensemble domain decomposition algorithm is proposed for fast solving the fully-mixed random Stokes-Darcy model with the physically realistic Beavers-Joseph (BJ) interface conditions. We utilize the Monte Carlo method for the coupled model with random inputs to derive some deterministic Stokes-Darcy numerical models and use the idea of the ensemble to realize the fast computation of multiple problems. One remarkable feature of the algorithm is that multiple linear systems share a common coefficient matrix in each deterministic numerical model, which significantly reduces the computational cost and achieves comparable accuracy with the traditional methods. Moreover, by domain decomposition, we can decouple the Stokes-Darcy system into two smaller sub-physics problems naturally. Both mesh-dependent and mesh-independent convergence rates of the algorithm are rigorously derived by choosing suitable Robin parameters. Optimized Robin parameters are derived and analyzed to accelerate the convergence of the proposed algorithm. Especially, for small hydraulic conductivity in practice, the almost optimal geometric convergence can be obtained by finite element discretization. Finally, two groups of numerical experiments are conducted to validate and illustrate the exclusive features of the proposed algorithm.
翻译:基于集成域分解算法的Beavers-Joseph界面条件下全混合随机Stokes-Darcy模型
翻译后的摘要:
本文提出了一种高效的基于集成域分解算法的数值方法,扩展了传统的有限元算法,用于快速求解带有物理真实的 Beavers-Joseph 相关界面条件的随机 Stokes-Darcy 模型。通过Monte Carlo方法对随机输入耦合模型进行求解,将其转化为多个具有相同系数矩阵方法的数值 Stokes-Darcy 模型,使用集成思想实现多个相似问题的计算加速,同时,采用域分解方法,将 Stokes-Darcy 系统自然地分解成两个小型子问题,可显著降低计算成本。根据选择的合适 Robin 参数,严格推导了算法的网格依赖和网格无关收敛速度,以加速算法的收敛。特别地,对于实际应用中的小值水力导数,可以通过有限元离散化获得几乎最优的收敛速度。最后,通过某些数值实验验证和说明了所提出方法的可行性和有效性。