Generating accurate runtime safety estimates for autonomous systems is vital to ensuring their continued proliferation. However, exhaustive reasoning about future behaviors is generally too complex to do at runtime. To provide scalable and formal safety estimates, we propose a method for leveraging design-time model checking results at runtime. Specifically, we model the system as a probabilistic automaton (PA) and compute bounded-time reachability probabilities over the states of the PA at design time. At runtime, we combine distributions of state estimates with the model checking results to produce a bounded time safety estimate. We argue that our approach produces well-calibrated safety probabilities, assuming the estimated state distributions are well-calibrated. We evaluate our approach on simulated water tanks.
翻译:为了确保自主系统的持续发展,生成准确的运行时安全估计非常重要。然而,关于未来行为的详尽推理通常在运行时过于复杂。为了提供可扩展和正式的安全估计,我们提出了一种在运行时利用设计时间模型检查结果的方法。具体地,我们将系统建模为概率自动机(PA),并在设计时间计算PA状态的有限时间到达概率。在运行时,我们将状态估计的分布与模型检查结果相结合,产生有限时间的安全估计。我们认为,如果估计的状态分布是良好校准的,则我们的方法可以产生良好校准的安全概率。我们在模拟的水箱上评估了我们的方法。