Textured meshes are becoming an increasingly popular representation combining the 3D geometry and radiometry of real scenes. However, semantic segmentation algorithms for urban mesh have been little investigated and do not exploit all radiometric information. To address this problem, we adopt an approach consisting in sampling a point cloud from the textured mesh, then using a point cloud semantic segmentation algorithm on this cloud, and finally using the obtained semantic to segment the initial mesh. In this paper, we study the influence of different parameters such as the sampling method, the density of the extracted cloud, the features selected (color, normal, elevation) as well as the number of points used at each training period. Our result outperforms the state-of-the-art on the SUM dataset, earning about 4 points in OA and 18 points in mIoU.
翻译:纹理介质正在成为一个日益流行的代号,将真实场景的3D几何和辐射测量结合起来。 但是,城市网格的语义分解算法很少受到调查,也没有利用所有辐射测量信息。 为了解决这个问题,我们采取了一种方法,从纹理网格取样一个点云,然后在这个云上使用一个点云语分解算法,最后使用获得的语义来分割最初网格。 在本文中,我们研究了不同参数的影响,例如取样方法、提取云的密度、所选特点(颜色、正常、高地)以及每个培训期间使用的点数。我们的结果超越了SUM数据集的状态,在OA中得出了大约4个点,在MIOU中得出了18个点。