We study active sampling algorithms for linear regression, which aim to query only a few entries of a target vector $b\in\mathbb R^n$ and output a near minimizer to $\min_{x\in\mathbb R^d} \|Ax-b\|$, for a design matrix $A\in\mathbb R^{n \times d}$ and loss $\|\cdot\|$. For $p$ norm regression for any $0<p<\infty$, we give an algorithm based on Lewis weight sampling outputting a $(1+\epsilon)$-approximate solution using just $\tilde O(d/\epsilon^2)$ queries to $b$ for $p\in(0,1)$, $\tilde{O}(d/\epsilon)$ queries for $1<p<2$, and $\tilde{O}(d^{p/2}/\epsilon^p)$ queries for $2<p<\infty$. For $0<p<2$, our bounds are optimal up to log factors, settling the query complexity for this range. For $2<p<\infty$, our dependence on $d$ is optimal, while our dependence on $\epsilon$ is off by at most $\epsilon$, up to log factors. Our result resolves an open question of [CD21], who gave near optimal bounds for the $1$ norm, but required $d^2/\epsilon^2$ samples for $\ell_p$ regression with $1<p<2$, and gave no bounds for $2<p<\infty$ or $0<p<1$. We also give the first total sensitivity bound of $O(d^{\max\{1,p/2\}}\log^2n)$ for loss functions of degree $p$ polynomial growth, improving a result of [TMF20]. By combining this with our techniques for $\ell_p$ regression, we obtain an active regression algorithm making $\tilde O(d^{1+\max\{1,p/2\}}/\mathrm{poly}(\epsilon))$ queries for such loss functions, including the Tukey and Huber losses, answering another question of [CD21]. For the Huber loss, we further improve our bound to $\tilde O(d^{4-2\sqrt2}/\mathrm{poly}(\epsilon))$ samples. Our sensitivity bounds also have many applications, including Orlicz norm subspace embeddings, robust subspace approximation, and dimension reduction for smoothed $p$-norms. Finally, our active sampling results give the first sublinear time algorithms for Kronecker product regression under every $p$ norm.


翻译:我们研究一个用于线性回归的主动取样算法, 目的是只查询几个目标矢量 $ b\ in\ mathb Rn$ 和输出一个接近最小值的 $\ m\ xx\ mathb R d} ⁇ Ax- b $, 设计矩阵$ An\ n\ mathb Rón d} 美元 和损失 $\ cddo} 20美元 的正常回归。 对于任何 $ < p\\ p\ inty$, 我们给出一个基于 Lewis 重量取样输出 $( 1 \ ⁇ sil) $ ($) 和 美元 美元 美元 和 美元 美元 美元 的正常值 。 对于我们最精度的解析值 $ 2 和 美元, 我们最精度的智性解算值 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
0+阅读 · 2022年11月2日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员