Loss functions drive the optimization of machine learning algorithms. The choice of a loss function can have a significant impact on the training of a model, and how the model learns the data. Binary classification is one of the major pillars of machine learning problems, used in medical imaging to failure detection applications. The most commonly used surrogate loss functions for binary classification include the binary cross-entropy and the hinge loss functions, which form the focus of our study. In this paper, we provide an overview of a novel loss function, the Xtreme Margin loss function. Unlike the binary cross-entropy and the hinge loss functions, this loss function provides researchers and practitioners flexibility with their training process, from maximizing precision and AUC score to maximizing conditional accuracy for a particular class, through tunable hyperparameters $\lambda_1$ and $\lambda_2$, i.e., changing their values will alter the training of a model.
翻译:损失函数驱动机器学习算法的优化。 选择损失函数可以对模型的培训以及模型如何学习数据产生重大影响。 二进制分类是机器学习问题的主要支柱之一, 用于医学成像到检测失败的应用。 二进制分类中最常用的替代损失函数包括二进制跨肾和断链损失函数, 它们是我们研究的焦点。 在本文中, 我们提供了一个新颖的损失函数的概览, Xtreme 磁力损失函数。 与二进制交叉体和临界损失函数不同, 这一损失函数为研究人员和从业者提供了培训过程的灵活性, 从最大限度的精确度和ACU分数到使某一类的有条件精确度最大化, 其方法就是通过可金枪鱼的超参数$\lambda_1美元和$\lambda_2$, 也就是说, 改变他们的值将改变模型的培训。