We propose a novel $\ell_1+\ell_2$-penalty, which we refer to as the Generalized Elastic Net, for regression problems where the feature vectors are indexed by vertices of a given graph and the true signal is believed to be smooth or piecewise constant with respect to this graph. Under the assumption of correlated Gaussian design, we derive upper bounds for the prediction and estimation errors, which are graph-dependent and consist of a parametric rate for the unpenalized portion of the regression vector and another term that depends on our network alignment assumption. We also provide a coordinate descent procedure based on the Lagrange dual objective to compute this estimator for large-scale problems. Finally, we compare our proposed estimator to existing regularized estimators on a number of real and synthetic datasets and discuss its potential limitations.
翻译:我们提出一个小说 $ell_1 ⁇ ell_2$-penalty, 我们称之为通用的 Elastic Net, 用于回归问题, 特征矢量由特定图形的顶部索引, 而对于这个图形, 真正的信号据信是平滑或片状的。 根据相关高斯设计假设, 我们得出预测和估计错误的上限值, 以图为依存, 包括回归矢量中未受处罚部分的参数率, 以及另一个取决于我们网络调整假设的术语。 我们还根据拉格朗双向目标提供了协调的下限程序, 以计算这个大型问题的估量符。 最后, 我们比较了我们提议的估算值, 以现有的正规化估计值为基础, 以一些真实的和合成的数据集为基础, 并讨论其潜在的局限性 。