We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of Optimal Control Problems (OCPs) constrained by random partial differential equations. The method requires to solve the OCP for several low-fidelity spatial grids and quadrature formulae for the objective functional. All the computed solutions are then linearly combined to get a final approximation which, under suitable regularity assumptions, preserves the same accuracy of fine tensor product approximations, while drastically reducing the computational cost. The combination technique involves only tensor product quadrature formulae, thus the discretized OCPs preserve the convexity of the continuous OCP. Hence, the combination technique avoids the inconveniences of Multilevel Monte Carlo and/or sparse grids approaches, but remains suitable for high dimensional problems. The manuscript presents an a-priori procedure to choose the most important mixed differences and an asymptotic complexity analysis, which states that the asymptotic complexity is exclusively determined by the spatial solver. Numerical experiments validate the results.
翻译:我们提出了一种混合技术,其依据是空间近似值和二次方程式的混合差异,用于随机局部偏差方程式制约的优化控制问题(OCPs),以有效解决受随机偏差方程式制约的一类优化控制问题(OCPs),该方法要求为目标功能的多个低纤维空间网格和二次方程式解决OCP。然后,所有计算出来的解决方案都是线性组合,以获得最终近似,在适当的常规假设下,保持微粒产品近似值的相同准确性,同时大幅降低计算成本。组合技术仅涉及粒子产品二次方程式,因此离散的OCPs保持连续的OCP的共性。因此,组合技术避免了多层次蒙特卡洛和/或稀疏格办法的不便,但仍适合高维度问题。手稿提出了一个选择最重要的混合差异的优先程序,并进行了微调的复杂度分析,该分析表明,单质性复杂度的复杂性完全由空间求解器决定。