Direct localization (DLOC) methods, which use the observed data to localize a source at an unknown position in a one-step procedure, generally outperform their indirect two-step counterparts (e.g., using time-difference of arrivals). However, underwater acoustic DLOC methods require prior knowledge of the environment, and are computationally costly, hence slow. We propose, what is to the best of our knowledge, the first data-driven DLOC method. Inspired by classical and contemporary optimal model-based DLOC solutions, and leveraging the capabilities of convolutional neural networks (CNNs), we devise a holistic CNN-based solution. Our method includes a specifically-tailored input structure, architecture, loss function, and a progressive training procedure, which are of independent interest in the broader context of machine learning. We demonstrate that our method outperforms attractive alternatives, and asymptotically matches the performance of an oracle optimal model-based solution.
翻译:直接本地化(DLOC)方法,即使用观测到的数据在一步骤程序中将来源定位于未知位置,通常优于间接的两步对应方(例如,使用抵达时间差异),然而,水下声学DLOC方法需要事先了解环境,而且计算成本高,因此速度慢。我们建议,根据我们的知识,什么是第一个数据驱动的DLOC方法。在传统和当代最佳模型化DLOC解决方案的启发下,利用革命神经网络(CNNs)的能力,我们设计了一个全面的CNN解决方案。我们的方法包括一个专门定制的投入结构、结构、损失功能和一个渐进式培训程序,这是在更广泛的机器学习背景下独立感兴趣的。我们证明,我们的方法超越了有吸引力的替代方法,并且在瞬间与一个最优化模型解决方案的性能相匹配。