We propose an adaptive multi-agent clustering recognition system that can be self-supervised driven, based on a temporal sequences continuous learning mechanism with adaptability. The system is designed to use some different functional agents to build up a connection structure to improve adaptability to cope with environmental diverse demands, by predicting the input of the agent to drive the agent to achieve the act of clustering recognition of sequences using the traditional algorithmic approach. Finally, the feasibility experiments of video behavior clustering demonstrate the feasibility of the system to cope with dynamic situations. Our work is placed here\footnote{https://github.com/qian-git/MAMMALS}.
翻译:我们提出了一种自适应多智能体聚类识别系统,它可以是自我监督驱动的,基于时序连续学习机制,具有适应性。该系统被设计为使用一些不同的功能代理来构建一种连接结构,以提高适应性,以应对环境上的不同需求,通过预测代理的输入来驱动代理使用传统算法方法来实现序列的聚类识别行为。最后,视频行为聚类的可行性实验证明了系统对应动态情况的可行性。我们的工作放在这里\footnote{https://github.com/qian-git/MAMMALS}。