图卷积网络(Graph Convolutional Networks, GCNs)作为一种学习图结构数据的神经网络,在处理图数据分析问题上表现出了极大的人气,被用于如节点分类、图分类、链路预测、推荐等任务中。典型的GCN及其变体通常采用消息传递方式,其关键步骤是特征聚合,即一个节点在每个卷积层中聚合来自其拓扑邻居的特征信息。这样,特征信息通过网络拓扑结构传播到邻居节点表示中,然后通过学习所有节点嵌入表示用于下游任务如分类等,该学习过程是由部分节点标签来监督的。实际上,GCNs能够取得巨大的成功部分归功于它提供了一种拓扑结构和节点特征的融合策略来学习节点表示,而这种融合策略的学习训练过程由一个端到端的模型框架来监督。
这里我们首先思考了一个问题:作为端到端框架的GCNs,从拓扑结构和节点特征中真正学习和融合了什么样的信息? 在第二小节我们通过实验设计评估了GCNs融合拓扑结构和节点特征的能力。实验结果表明,GCNs在融合网络拓扑结构和节点特征上能力上与最理想的水平相差甚远。即使在一些简单的情况下(节点的特性/拓扑与节点标签的关联是非常明确的)GCN仍不能自适应地融合节点特性和拓扑结构并提取最相关的信息。而无法自适应学习到拓扑结构、节点特征与最终任务之间最相关的信息,可能会严重阻碍GCNs在分类任务中的表现能力,并且由于实际应用中图数据与任务之间的相关性往往非常复杂且不可知,因此自适应能力也是很重要的。
针对这些问题,我们提出了一种灵活地用于半监督节点分类的自适应多通道图卷积网络方案。其核心思想是同时学习基于节点特征、拓扑结构及其组合的节点嵌入,并依据特征与结构之间的相似性对标签预测的作用往往是互补的这一事实,采用设计的自适应融合机制来获取对分类任务最有帮助且最深层次的相关信息。