Multi-parametric magnetic resonance (MR) imaging is an indispensable tool in the clinic. Consequently, automatic volume-of-interest segmentation based on multi-parametric MR imaging is crucial for computer-aided disease diagnosis, treatment planning, and prognosis monitoring. Despite the extensive studies conducted in deep learning-based medical image analysis, further investigations are still required to effectively exploit the information provided by different imaging parameters. How to fuse the information is a key question in this field. Here, we propose an uncertainty-aware multi-parametric MR image feature fusion method to fully exploit the information for enhanced 3D image segmentation. Uncertainties in the independent predictions of individual modalities are utilized to guide the fusion of multi-modal image features. Extensive experiments on two datasets, one for brain tissue segmentation and the other for abdominal multi-organ segmentation, have been conducted, and our proposed method achieves better segmentation performance when compared to existing models.
翻译:多参数磁共振成像(MR)是诊所不可或缺的工具,因此,基于多参数MR成像的自动利益量分离对于计算机辅助疾病诊断、治疗规划和预测监测至关重要。尽管在深入学习的医学图像分析中进行了广泛的研究,但仍需进一步调查才能有效利用不同成像参数提供的信息。如何整合信息是该领域的一个关键问题。在这里,我们提议采用一种具有不确定性的多参数MR成像特征聚合方法,充分利用信息加强3D成像分离。个体模式独立预测中的不确定性被用于指导多模式图像特征的融合。已经对两个数据集进行了广泛的实验,一个用于脑组织分割,另一个用于腹部多机断裂,我们提出的方法与现有模型相比,实现了更好的分化性功能。