The Peaceman-Rachford alternating direction implicit (ADI) scheme for linear time-dependent Maxwell equations is analyzed on a heterogeneous cuboid. Due to discontinuities of the material parameters, the solution of the Maxwell equations is less than $H^2$-regular in space. For the ADI scheme, we prove a rigorous time-discrete error bound with a convergence rate that is half an order lower than the classical one. Our statement imposes only assumptions on the initial data and the material parameters, but not on the solution. To establish this result, we analyze the regularity of the Maxwell equations in detail in an appropriate functional analytical framework. The theoretical findings are complemented by a numerical experiment indicating that the proven convergence rate is indeed observable and optimal.
翻译:Peaceman-Rachford 的线性时间依赖的 Maxwell 方程式交替方向隐含(ADI) 方案在异质的幼崽上分析。 由于材料参数的不连续性, Maxwell 方程式的解决方案在空间中不及常态。 对于 ADI 方案, 我们证明这是一个严格的时间分解错误, 其趋同率比古典的低半个顺序。 我们的声明只对初始数据和材料参数进行假设, 而不是对解决方案进行假设。 为了确定这一结果, 我们在一个适当的功能分析框架内详细分析 Maxwell 方程式的规律性。 理论结论得到一个数字实验的补充, 表明已证明的趋同率确实可观察和最佳。