The mixed form of the Cahn-Hilliard equations is discretized by the hybridizable discontinuous Galerkin method. For any chemical energy density, existence and uniqueness of the numerical solution is obtained. The scheme is proved to be unconditionally stable. Convergence of the method is obtained by deriving a priori error estimates that are valid for the Ginzburg-Lindau chemical energy density and for convex domains. The paper also contains discrete functional tools, namely discrete Agmon and Gagliardo-Nirenberg inequalities, which are proved to be valid in the hybridizable discontinuous Galerkin spaces.
翻译:Cahn-Hilliard方程式的混合形式由可混合不连续的Galerkin方法分解。对于任何化学能量密度、数字溶液的存在和独特性,均获得该方法的存在和独特性。该方法被证明是无条件稳定的。该方法的趋同是通过得出对Ginzburg-Lindau化学能量密度和锥形域有效的先验误差估计获得的。该文件还载有离散功能工具,即离散的Agmon和Gagliardo-Nirenberg不平等,这些工具在可混合不连续的Galerkin空间被证明有效。</s>